
P á g i n a | 1

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

Supplementary Notebook (RTEP - Brazilian academic journal, ISSN 2316-1493)

TASK MANAGER FOR GENERAL-PURPOSE OPERATING
SYSTEMS

Alexey I. Martyshkin 1

1Candidate of technical sciences, docent, associate Professor of sub-department
«Computers and systems», Penza state technological University.

(440039, Russia, Penza, Baydukov Proyezd / Gagarin Street, 1a/11, e-mail:
alexey314@yandex.ru).

Abstract: This paper suggests a possible task manager implementation for general-
purpose operating systems. The aim of the study is to maximize processor utilization in
exclusive mode for general-purpose operating systems. The subject research field of this
study is relevant today in the light of global informatization and the urgent issue of
improving computing performance. In order to achieve the objectives, set in this study,
several particular problems have been solved, which include analysing various
scheduling strategies for computational task execution, comparing specifics of various
operating systems, choosing a system resource allocating method, developing a software
for running calculations in priority mode, and minimizing scheduling and dispatching
overheads. During the study, we have analysed four families of general-purpose
operating systems and their features. A summary information on the utilized scheduling
and dispatching algorithms has been prepared based on the analysis results, which
allowed choosing the appropriate approach to solve the problem under consideration. A
resource allocation method has been chosen and implemented as software unit, based
on mechanisms common to the considered systems that developed software starts
computations under a configuration corresponding to the system's topology, sets a real-
time scheduling policy for threads, assigns them to available computational cores, and
independently dispatches task execution. The effectiveness of the developed software is
confirmed by test runs and measurement of such indicators as runtime, number of
context switches and accesses to external memory. The main results obtained can be
applied when designing new and improving the existing general-purpose operating
systems.

Keywords: scheduling algorithm, computations, time slicing, overheads, operating
system, optimization, task scheduling and dispatching, task manager, priority,
performance, processor, resource.

P á g i n a | 2

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

INTRODUCTION

Conceptual provisions on the essence of audit the today's world sets high
requirements to the computing performance. Task optimization with the execution time
reduced from one minute to 59 seconds will most likely go unnoticed by a regular PC
user. The situation is different when large amounts of data shall be processed (16).
Reducing the execution time of a continuously repeated task from 60 to 59 seconds
allows finishing the entire number of operations 1.67% faster or perform 1.67% more
operations in the same time period. Thus, about six days of runtime per year can be
gained. It is not always possible to optimize the computations, in particular (17). Task
runtimes can be divided into several stages: including initialization, CPU wait, waiting
for other resources, CPU execution, termination. Initialization includes creating the data
structures required for the operating system's kernel, loading the application image into
the main memory, opening the required files, allocating other resources, and initial CPU
execution scheduling. Tasks waiting for CPU in a ready tasks queue is a standard
procedure in multi-tasking systems with time-sharing. Typically, the CPU executes a
priority task while the rest are waiting in a queue. The operating system's kernel uses
dynamic priorities preventing any task to monopolize the CPU (34). Task execution by
the CPU at some point in time means its code is executed at that moment by the CPU. If a
certain event is necessary for the further execution of a task, the task is added to the
queue and wait for this event. Such an event may be I/O being finished without CPU
participation, system resource being freed (for example, a synchronization primitive),
and etc.

I/O waiting time depends on the load and bandwidth of the I/O subsystem. CPU
execution time depends on the program code optimization. The queue waiting time for
ready tasks depends on their number in the system, the required computing power, the
ratio of priorities and configuration of OS scheduler and task manager. Initialization
time almost completely depends on the operating system implementation specifics (34).
When studying the subject research field, we analysed literature sources (5; 18; 11; 12;
20) and (18; 11; 12; 20; 19; 12; 11; 2; 38) in order to find any poorly studied issues.
Some important issues related to implementation of scheduling and dispatching
subsystems of computer systems did not find the necessary coverage in published
works, however, they are mentioned in the following sources (27; 37; 15; 28;) and (31;
4; 3; 7). This study discusses the problems associated with task execution scheduling
and dispatching. The objective for this study is to maximize CPU resources utilization in
exclusive mode for general-purpose operating systems. The subject research field
considered in this study is relevant today due to global informatization and the urgent
issue of improving computing performance. To achieve the objective defined above, the
study solves the following particular problems: analyse various strategies for
computational task execution scheduling; compare the specifics of various operating
systems; choose a resource allocation method; develop a software for running
calculations in priority mode to minimize scheduling and dispatching overheads;
perform comparative performance measurements.

General-purpose operating systems are used in personal computers and server
systems, usually for data processing (computing, processing, storage). The main
requirement to these systems is wide support for various software packages (34). Low
cost of personal computers and a wide range of solved tasks contributed to their
widespread use (35; 33), as well as induced rapid development of time-sharing

P á g i n a | 3

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

operating systems. Such systems are intended to solve the following problems: ensure
full utilization of computer resources; ensure that each task is executed by the CPU;
ensure each task receives the required amount of computing resources depending on
their priority. Time-sharing systems use CPU time slicing for task execution. In the
general case, the task is interrupted as a time slice expires, and the next task is selected
for execution. Implementation details depend on the algorithm used for task scheduling.

SCHEDULING ALGORITHMS

In the context of this study, it makes sense to define scheduling algorithms that
have an independent implementation or are a part of a more complex algorithm: First
Come First Served (FCFS, FIFO) — execution in the order of arrival (39). The first ready
task is executed by the CPU, each subsequent task enters the queue and waits for the
completion of all tasks ahead of it. This ensures execution in case none of the tasks
occupy the CPU forever. This algorithm is not related to time-sharing since tasks are
executed sequentially without interrupting. Round Robin (RR) — tasks are performed
cyclically in fixed time intervals (32). At the end of each interval, the task is added to the
end of the queue. For each task, this process is repeated until it is completed. The cyclic
nature of the algorithm ensure that each task takes 1/N of CPU time, where N is the total
number of tasks. Shortest Job First — each time a task is selected for execution with the
smallest execution time available in the queue (32). Though, for this algorithm to work,
the time required to complete a certain task shall be known. Fixed Priority Pre-emptive
— at any given time, the CPU executes the highest priority task (36). When a task with
the highest priority appears, the task being executed is interrupted and is queued,
freeing the resources for the priority one. Execution of low priority tasks is not
guaranteed. Earliest Deadline First — each task is assigned a deadline, exceeding which
makes further execution no longer required (9).

Priority Queue — a queue with task processing order not depending on the time
when tasks are added to the queue (32). Each time, a task with the highest priority is
selected for execution from the entire queue. With this case, two implementations are
possible: a pre-emptive algorithm, when a task in the queue with a priority higher than
the one being processed, pre-empts the latter, and a non-pre-emptive algorithm, when a
new task with the highest priority waits for the task already executed by the CPU to be
completed. Multilevel queue — tasks are added to one of the queues that differ in
priorities and assigned to it until completion (32). A task is selected for execution from
the priority queue. Queues can implement various scheduling algorithms. For example,
two queues can be used for different classes of tasks, a FCFS queue with a higher
priority, and a lower priority queue with a priority-based internal implementation.
Tasks from the first queue can pre-empt tasks of the second queue from the CPU. Thus,
two classes of tasks can be simultaneously processed — tasks of ordinary and higher
priority, which is pre-emptive. Multilevel feedback queue — unlike a multilevel queue,
tasks can switch from one queue to another, usually after exhausting their CPU quota
(32).

OVERHEADS AND THEIR IMPACT

Overheads consist of the time required for scheduling/dispatching tasks and
related processes. The scheduler’s runtime depends on the computational complexity of
its implementation and, generally, the number of tasks in the system. Typically,

P á g i n a | 4

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

dispatching is well optimized and takes very little CPU time, however, the related
context switching process entails cache cooling, TLB invalidation and, in the worst case,
page swapping. Cache cooling means losing cache entries and frequent cache misses
before the cache warms up. A cache miss is followed by an access to a lower, slower
memory level. TLB contains addresses of virtual pages of the process. TLB invalidation
results in double number of accesses to RAM (8). Process page swapping to disk is a way
to deal with low memory. Process pages not currently required are saved to disk, and
the necessary pages are loaded into RAM. This leads to an active exchange with the
slowest memory in a PC. Computing performance massively decreases in the case of
active swapping (34).

The following operating systems have been selected to study the functionality
and utilized scheduling/dispatching algorithms: FreeBSD 10; GNU\Linux 4; Oracle
Solaris 11; Microsoft Windows 7. The choice of operating systems for analysis is dictated
by their prevalence in computing applications, as well as by an intention to cover
various operating system families to identify the most suitable implementations of the
required functionality. This study uses the concept of a "task" to denote an independent
dispatch unit. Using the terminology of Windows, Solaris, and FreeBSD operating
systems, a "process" is a system entity containing the environment necessary for
application execution, including program code. A "thread" is an entity that stores the
execution state of a sequence of instructions related to a process. One process can have
one or several threads (26; 1; 10). All Linux threads are actually processing that share
common system resources (14). As these resources are already allocated, thread
creation overheads are reduced. The result is an entity, which is dispatched as threads in
other operating systems. Thus, all considered operating systems use threads as a
minimum dispatch unit.

TASK SCHEDULERS

The FreeBSD kernel scheduler uses several priority executions queues (run
queues, Figure 1a): itqueues, rtqueues, queues, idqueues — in decreasing order by
priority (26).

Figure 1. Schedulers of various operating systems

P á g i n a | 5

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

A priority task is selected from the non-empty higher priority queue. Task
execution is forcibly interrupted after the time slice allocated to it is elapsed, and its
dynamic priority is recounted. The task is added to the end of a queue containing tasks
of equal priority. A task that locked a shared resource receives the priority of a task
waiting for this resource, if it is higher. The Solaris OS scheduler uses multiple queues as
per the number of priorities, as well as a priority conversion table (Figure 1b). When the
time slice allocated for a task expires, the priority of this task is decreased, however, at
the same time, its next time slice is increased. On the contrary, the task, which frees the
CPU before the time slice expires, gets a higher priority and a smaller time slice. As a
result, the waiting time of small frequent tasks is reduced, they get executed faster, while
large computational tasks are executed more efficiently because their execution is
interrupted less often. Tasks that lock system resources receive a higher priority, which
reduces the execution time of such tasks, reduces the time till resource release, and
reduces waiting time of tasks waiting for this resource.

CFS scheduler, included in the main branch of Linux kernel development, uses
several different data structures (Figure 1c) (6). Deadline class tasks have a clearly
defined execution time and deadline. They are scheduled for execution by the Earliest
Deadline First algorithm. Real-time tasks have static priorities and are scheduled
according to one of the following algorithms: First Come First Served or Round Robin.
Fixed time slices are used for the latter case, after which the tasks are added to the end
of the queue according to its priority. In the first case, the higher priority task is
executed completely, without interrupting. For standard priority tasks, CFS implements
a weighted fair queue algorithm. Being assigned to the CPU, the task receives execution
time proportional to the queue waiting time and inversely proportional to the number of
tasks ready for execution.

Windows OS family task scheduler uses several classes and priority levels: low,
medium, high, and two intermediate levels (Figure 1d). Each task is assigned a base
priority by the scheduler. A task with the highest priority is always selected for
execution. The kernel scheduler can increase its priority in one of the following four
cases: 1. an event occurs, for example, user input waiting to be handled by a task; 2. the
task is performed interactively in the foreground; 3. the task is unlocked; 4. tasks ready
for execution are randomly and periodically assigned a higher priority. As a CPU time
slice expires, the dynamic priority of a task decreases by one, down to lower limit. Thus,
the scheduler fights the "starvation" effect by increasing the priorities of waiting tasks
and bringing them back to normal as this effect decreases. Interactive processes are also
assigned higher priorities.

PRIORITY SCHEDULING STRATEGIES

FreeBSD, Linux, and Solaris operating systems support Pthreads, a POSIX-
compatible library that provides a single interface for multi-threaded applications.
Solaris also provides its own Solaris Threads interface, introduced before Pthreads.
Solaris Threads provides such features as parallelism management, thread
sleep/wakeup, read/write locks mechanism, and daemon thread creation. In contrast, it
does not support thread cancellation and POSIX scheduling strategies. Windows has its
own threads implementation — Windows Threads. This interface has many features
that are not supported in POSIX, such as: per user scheduling, fibers manually managed
in the scope of a stream, critical sections as a synchronization primitive. Table 1 contains
a summary on the interfaces for interaction with threads, schedulers, and their

P á g i n a | 6

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

configurations.

Table 1. Interfaces of operating systems

OS family FreeBSD GNU/Linux Solaris Windows

Thread management POSIX.1 Pthreads Windows Threads

Scheduler
interface

sched_setscheduler
(SCHED_FIFO)

SetPriorityClass
(REAL TIME_PRIORITY_ CLASS)

CPU affinity pthread_
setaffinity_ np

sched_ setaffinity processor_ bind SetThreadAffinityMask

As can be seen from the table, FreeBSD, Linux, Solaris OSs support POSIX
standardized interfaces (29), and therefore the code that implements interactions via
these interfaces will be easily portable between systems. The POSIX standard does not
include the CPU affinity functionality for threads, however, all the considered operating
systems have similar capabilities, although without a cross-compatibility.

SOFTWARE IMPLEMENTATION
Computing process scheme

The computing process is based on scheme that uses the general principles
implemented in the operating systems considered above. To maximize CPU utilization
by computational tasks and minimize the number of context switches, SCHED_FIFO
scheduling strategy has been selected. This allows to bind the required number of
threads to the CPU, which are not pre-empted after time slices expire. Tasks are
implemented as functions contained in a queue being part of the application. Task
managing includes saving the result returned by the function, reading and moving the
pointer, and calling a new function. To exclude possible thread migrations between
processors, an explicit processor binding is used. Software interrupts are also
prohibited.

Definition of system topology

System topology, the number of processors, physical and logical cores are
determined at application start. On Linux, this information is extracted from sysfs
unified virtual file system, which serves as an interface for kernel structures.
/sys/devices/system/cpu/ virtual folder contains cpuN sub-folders with files describing
the topology and state of the corresponding logical kernel number N:

int topology (int ** cpus)
{
struct dirent ** cpusdir; int c, count;
count = scandir (SYSFS_CPU, &cpusdir, cpu_dir_filter, alphasort);
if ((*cpus = malloc (sizeof(int) * count)) == NULL)
{
err (EXIT_FAILURE, "can't allocate memory for " \ "cpus array");
}
for (c=0; c < count; ++c)
{
assert (1 == sscanf (cpusdir[c]->d_name, "cpu%d", &(*cpus)[c]));
}

P á g i n a | 7

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

return count;
}

After the topology is determined, a decision is on the CPU affinity of the
computing threads:

cpu_set_t set;
/* ... */
if (tharg -> cpu >= 0) /* if < 0, do not bind */
{
CPU_SET (tharg -> cpu, &set);
if (-1 == sched_setaffinity (0, sizeof(set), &set))
{
err (EXIT_FAILURE, "Can't set affinity mask");
}
}

Assigning real-time priority

In order to arrange the computational process, we decided to create a dedicated
software that prepares threads for computation and initiates tasks. Each thread runs on
a dedicated core/processor, and the number of threads is equal to the number of cores
minus one. One core is allocated to the needs of various system and user tasks. This
allows to achieve the maximum degree of parallelism, while maintaining system
responsiveness. Since CPU time-sharing strategy does not allow monopolizing the cores
for practical computations, we decided to assign the computational tasks to the real-
time class, having the highest priority in the system. Real-time tasks have the highest
priority, which does not change depending on the execution time, and are never pre-
empted by low-priority tasks. Computational tasks get maximum CPU time.

FCFS task scheduling algorithm has been selected since this algorithm results in
minimal overheads and is easy to implement. Time slicing is not used, and the task is not
forcibly interrupted until its execution is finished. No unnecessary context switches are
used, the caches are warm most of the time and work efficiently.

SCHED_FIFO scheduling strategy is set usingsched_setscheduler system output,
implementation of the call in the source code is shown below.

if (-1 == sched_setscheduler (0 /* self */, SCHED_FIFO,
&((struct sched_param) { .sched_priority = 99 })))
{
warn ("Can't set SCHED_FIFO policy");
}

Interrupt binding

Interrupt handling can be assigned to a specific core. A proc virtual file system
interface is used for this purpose. /proc/irq/M/smp_affinity file (where M is the
interrupt number) contains a mask, high bits of which define permissions for being
handled by the core with the corresponding number. At start-up, the developed software
records the mask and the corresponding free core. For example, mask 8 corresponds to
core 3.

P á g i n a | 8

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

Application task queue arrangement

The application queue contains pointers to functions and arguments passed to
them. Computational threads independently select tasks by copying pointers to a
function and an argument into their local context and moving the current queue
element's pointer. Mutex synchronization primitive is used for sharing. The block
diagram of the task selection algorithm is shown in Figure 2.

Figure 2. Queued task selection algorithm

THE RESULTS OF THE CONCLUDED RESEARCH
Measurements of the software performance indicators

The measurements of counters built into the CPU and Linux operating system
kernel (starting from version 2.6.31) have been made using the perf utility (Mikheev et
al., 2016; Martyshkin et al., 2019; Martyshkin & Martens-Atyushev, 2019). The number
of context switches, TLB misses, cache misses of the first and last level, the number of
thread migrations from processor to processor, and the total execution time have been
measured. Test run and measurements have been carried out on a PC with an
Intel®Core™ i5 6200U processor, running GNU/Linux OS (x64, kernel version 4.4.0-79-
generic). CPU specifications:

• Number of physical cores: 2.

• Number of logical cores: 2.

• Operating frequency: 2.30 GHz.

• L1 instruction cache: 32 KB per core.

• L1 data cache: 32 KB per core.

• L2 cache: 256 KB per core.

• L3 cache: 3 MB per processor.

The operating system's kernel has been allocated 2 GB of RAM. As a useful load, a
task has been chosen that implements a cyclic array traversal with a varying step and
increasing element values. The array size was 5 MB. The external load has been
modelled by four processes actively performing operations with memory (allocated a
total of 1.5 GB of RAM). The measurement results are summarized in Table 2 as the
average values of collections with confidence intervals for each of 100 independent
measurements. The values of all indicators are expressed in the number of events,
except for time, which is expressed in seconds. The first column of the table contains a
list of measured indicators (branches, cache-misses, etc.) and explanations regarding the
test environment:

P á g i n a | 9

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

• No load — no CPU consuming tasks have been running on the machine in
addition to the test task. CPU load before the test launch remained at 3-5%, which
indicated idle state of the CPU.

• Load 1 — CPU load simulating application has been also running on each core of
the machine in addition to the test task. This application worked with a small amount of
RAM (0.1% of the total amount of RAM), constantly performing arithmetic operations.

• Load 2 — CPU load simulating application has been also running on each core of
the machine in addition to the test task. Each instance of this application worked with a
large amount of RAM (about 19% of the total amount), constantly performing arithmetic
operations.

The remaining column headers contain three-character codes. The first letter
denotes the application configuration (D is the default configuration by OS, C is the
configuration prepared by the developed application). The number corresponds to the
number of threads (T) started by the application.

Table 2. Measurement results

No load D1T C1T
branches 1.436e+10 ± 4.664e+06 1.435e+10 ± 1.030e+07
cache-misses 1.495e+09 ± 2.677e+06 1.502e+09 ± 8.676e+05
cache-references 2.697e+09 ± 2.879e+06 2.705e+09 ± 1.098e+06
dTLB-load-misses 478 ± 55 104 ± 24
dTLB-loads 6.458e+10 ± 1.078e+07 6.459e+10 ± 2.472e+07
dTLB-store-misses 797 ± 210 12.4 ± 2.1
dTLB-stores 2.157e+10 ± 3.665e+06 2.159e+10 ± 7.813e+06
page-faults 1.087e+03 ± 1.074e-01 1.088e+03 ± 1.640e-01
context-switches 48.6 ± 2.9 1.20 ± 0.09
cpu-migrations 0.80 ± 0.09 1.00 ± 0.00
time 22.1 ± 0.1 21.4 ± 0.0
No load D2T C2T
branches 1.435e+10 ± 5.726e+06 1.431e+10 ± 1.864e+06
cache-misses 1.700e+09 ± 2.195e+06 1.663e+09 ± 8.744e+05
cache-references 2.717e+09 ± 2.457e+06 2.693e+09 ± 1.334e+06
dTLB-load-misses 2.276e+04 ± 2.956e+03 503 ± 41
dTLB-loads 6.448e+10 ± 1.706e+07 6.459e+10 ± 9.164e+06
dTLB-store-misses 2.297e+05 ± 4.241e+04 44.8 ± 5.5
dTLB-stores 2.155e+10 ± 2.234e+06 2.157e+10 ± 4.342e+06
page-faults 1.098e+03 ± 1.640e-01 1.099e+03 ± 1.074e-01
context-switches 2.191e+03 ± 1.429e+01 3.20 ± 0.21
cpu-migrations 1.00 ± 0.00 3.40 ± 0.18
time 11.8 ± 0.0 11.7 ± 0.0
No load D3T C3T
branches 1.434e+10 ± 5.941e+06 1.429e+10 ± 2.760e+06
cache-misses 1.759e+09 ± 2.635e+06 1.769e+09 ± 2.020e+06
cache-references 2.726e+09 ± 7.285e+05 2.721e+09 ± 2.193e+06
dTLB-load-misses 4.783e+03 ± 1.447e+02 2.780e+03 ± 1.627e+02
dTLB-loads 6.459e+10 ± 5.919e+06 6.458e+10 ± 1.162e+07
dTLB-store-misses 1.110e+03 ± 7.133e+01 226 ± 18
dTLB-stores 2.158e+10 ± 6.639e+06 2.153e+10 ± 3.971e+06
page-faults 1.107e+03 ± 8.765e-02 1.108e+03 ± 1.640e-01

P á g i n a | 10

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

context-switches 675 ± 68 7.80 ± 0.56
cpu-migrations 13.0 ± 1.7 6.80 ± 0.21
time 10.6 ± 0.0 10.8 ± 0.0
No load D4T C4T
branches 1.435e+10 ± 2.488e+06 1.432e+10 ± 3.669e+06
cache-misses 1.845e+09 ± 1.930e+06 1.799e+09 ± 2.599e+06
cache-references 2.747e+09 ± 1.440e+06 2.741e+09 ± 2.915e+06
dTLB-load-misses 2.086e+04 ± 1.252e+03 1.621e+03 ± 1.599e+02
dTLB-loads 6.453e+10 ± 1.124e+07 6.454e+10 ± 1.465e+07
dTLB-store-misses 5.382e+03 ± 2.319e+02 82.8 ± 8.2
dTLB-stores 2.158e+10 ± 6.639e+06 2.154e+10 ± 3.601e+06
page-faults 1.117e+03 ± 8.765e-02 1.118e+03 ± 2.235e-01
context-switches 6.570e+03 ± 9.412e+01 12.2 ± 0.7
cpu-migrations 10.2 ± 1.1 8.00 ± 0.31
time 10.0 ± 0.0 11.2 ± 0.1

Table 2. continued.

Load 1 D1T C1T
branches 1.435e+10 ± 7.193e+06 1.436e+10 ± 1.761e+06
cache-misses 1.513e+09 ± 8.936e+05 1.484e+09 ± 1.705e+06
cache-references 2.733e+09 ± 3.375e+06 2.737e+09 ± 5.586e+05
dTLB-load-misses 8.761e+04 ± 1.947e+03 66.0 ± 9.9
dTLB-loads 6.457e+10 ± 2.873e+07 6.444e+10 ± 5.903e+06
dTLB-store-misses 1.030e+06 ± 2.830e+04 3.50 ± 1.16
dTLB-stores 2.157e+10 ± 8.985e+06 2.154e+10 ± 3.123e+06
page-faults 1.088e+03 ± 8.765e-02 1.088e+03 ± 1.323e-01
context-switches 2.988e+03 ± 7.981e+01 2.40 ± 0.10
cpu-migrations 27.0 ± 1.3 1.00 ± 0.00
time 34.0 ± 0.2 23.1 ± 0.0
Load 1 D2T C2T
branches 1.435e+10 ± 6.432e+06 1.430e+10 ± 1.702e+06
cache-misses 1.702e+09 ± 2.208e+06 1.663e+09 ± 3.761e+05
cache-references 2.717e+09 ± 1.496e+06 2.696e+09 ± 6.666e+05
dTLB-load-misses 7.739e+04 ± 1.574e+03 469 ± 27
dTLB-loads 6.448e+10 ± 2.065e+07 6.455e+10 ± 2.640e+06
dTLB-store-misses 8.214e+05 ± 2.236e+04 82.6 ± 22.5
dTLB-stores 2.155e+10 ± 6.607e+06 2.155e+10 ± 7.560e+05
page-faults 1.097e+03 ± 8.765e-02 1.099e+03 ± 2.556e-01
context-switches 4.220e+03 ± 5.518e+00 3.20 ± 0.09
cpu-migrations 1.40 ± 0.11 1.00 ± 0.00
time 23.7 ± 0.0 11.5 ± 0.0
Load 1 D3T C3T
branches 1.434e+10 ± 6.226e+06 1.431e+10 ± 3.532e+06
cache-misses 1.782e+09 ± 2.505e+06 1.771e+09 ± 8.000e+05
cache-references 2.757e+09 ± 4.269e+06 2.742e+09 ± 1.417e+06
dTLB-load-misses 1.282e+04 ± 5.318e+02 4.382e+03 ± 2.493e+02
dTLB-loads 6.449e+10 ± 1.561e+07 6.456e+10 ± 1.069e+07
dTLB-store-misses 4.292e+03 ± 2.184e+02 398 ± 14
dTLB-stores 2.155e+10 ± 9.231e+06 2.154e+10 ± 4.791e+06
page-faults 1.108e+03 ± 8.765e-02 1.109e+03 ± 1.074e-01
context-switches 3.133e+03 ± 3.443e+01 3.80 ± 0.16
cpu-migrations 108 ± 2 2.80 ± 0.16

P á g i n a | 11

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

time 21.1 ± 0.1 12.6 ± 0.0
Load 1 D4T C4T
branches 1.433e+10 ± 7.305e+06 1.433e+10 ± 3.099e+06
cache-misses 1.814e+09 ± 1.722e+06 1.797e+09 ± 2.400e+06
cache-references 2.753e+09 ± 4.099e+06 2.748e+09 ± 6.591e+05
dTLB-load-misses 1.247e+04 ± 3.250e+02 2.194e+03 ± 2.202e+02
dTLB-loads 6.455e+10 ± 1.287e+07 6.449e+10 ± 7.020e+06
dTLB-store-misses 4.281e+03 ± 1.577e+02 174 ± 13
dTLB-stores 2.154e+10 ± 6.842e+06 2.155e+10 ± 4.983e+06
page-faults 1.118e+03 ± 1.640e-01 1.118e+03 ± 1.074e-01
context-switches 3.684e+03 ± 3.068e+01 4.60 ± 0.53
cpu-migrations 60.6 ± 3.8 4.20 ± 0.35
time 18.9 ± 0.0 11.3 ± 0.1

Table 2. continued.

Load 2 D1T C1T
branches 1.435e+10 ± 5.606e+06 1.436e+10 ± 2.663e+06
cache-misses 1.606e+09 ± 1.047e+06 1.579e+09 ± 8.044e+05
cache-references 2.719e+09 ± 2.412e+06 2.739e+09 ± 1.995e+06
dTLB-load-misses 3.959e+05 ± 1.314e+05 1.530e+06 ± 2.442e+03
dTLB-loads 6.465e+10 ± 1.587e+07 6.459e+10 ± 1.663e+07
dTLB-store-misses 4.462e+06 ± 1.462e+06 1.839e+07 ± 2.129e+04
dTLB-stores 2.158e+10 ± 4.435e+06 2.157e+10 ± 3.151e+06
page-faults 1.396e+03 ± 1.344e+02 2.624e+03 ± 8.765e-02
context-switches 3.245e+03 ± 5.795e+01 2.20 ± 0.09
cpu-migrations 32.8 ± 1.1 1.00 ± 0.00
time 35.1 ± 0.2 23.4 ± 0.0
Load 2 D2T C2T
branches 1.431e+10 ± 6.404e+06 1.434e+10 ± 3.165e+06
cache-misses 1.749e+09 ± 2.172e+06 1.693e+09 ± 1.645e+06
cache-references 2.712e+09 ± 3.882e+06 2.710e+09 ± 2.503e+06
dTLB-load-misses 1.233e+06 ± 3.981e+04 1.162e+06 ± 8.296e+04
dTLB-loads 6.453e+10 ± 3.515e+07 6.466e+10 ± 9.244e+06
dTLB-store-misses 1.346e+07 ± 4.751e+05 1.310e+07 ± 1.051e+06
dTLB-stores 2.156e+10 ± 6.402e+06 2.160e+10 ± 2.077e+06
page-faults 4.166e+03 ± 1.753e-01 4.371e+03 ± 5.479e+01
context-switches 4.207e+03 ± 7.115e+00 3.20 ± 0.16
cpu-migrations 2.60 ± 0.41 1.40 ± 0.11
time 24.0 ± 0.0 11.9 ± 0.0
Load 2 D3T C3T
branches 1.435e+10 ± 2.764e+06 1.433e+10 ± 4.876e+06
cache-misses 1.823e+09 ± 3.568e+06 1.797e+09 ± 2.812e+06
cache-references 2.766e+09 ± 4.407e+06 2.738e+09 ± 1.993e+06
dTLB-load-misses 9.419e+04 ± 2.005e+04 7.027e+04 ± 1.814e+04
dTLB-loads 6.456e+10 ± 2.016e+07 6.457e+10 ± 1.806e+07
dTLB-store-misses 2.084e+04 ± 5.140e+03 1.922e+03 ± 5.547e+02
dTLB-stores 2.155e+10 ± 4.381e+06 2.156e+10 ± 6.855e+06
page-faults 2.233e+03 ± 3.841e+02 2.949e+03 ± 5.516e+02
context-switches 2.981e+03 ± 6.360e+01 5.20 ± 0.32
cpu-migrations 119 ± 2 3.20 ± 0.35
time 21.1 ± 0.1 12.6 ± 0.0
Load 2 D4T C4T

P á g i n a | 12

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

branches 1.434e+10 ± 2.563e+06 1.432e+10 ± 2.607e+06
cache-misses 1.869e+09 ± 5.291e+06 1.810e+09 ± 1.661e+06
cache-references 2.761e+09 ± 2.695e+06 2.748e+09 ± 1.722e+06
dTLB-load-misses 7.792e+04 ± 4.837e+03 6.143e+03 ± 1.514e+03
dTLB-loads 6.454e+10 ± 1.784e+07 6.445e+10 ± 9.041e+06
dTLB-store-misses 1.428e+04 ± 4.364e+02 844 ± 233
dTLB-stores 2.151e+10 ± 8.464e+06 2.153e+10 ± 4.089e+06
page-faults 2.448e+03 ± 5.472e+01 1.326e+03 ± 9.031e+01
context-switches 3.707e+03 ± 3.763e+01 7.60 ± 0.41
cpu-migrations 75.0 ± 4.5 5.40 ± 0.26
time 19.6 ± 0.1 11.7 ± 0.1

Table 2 shows that computation time with the developed application is virtually
not dependent on the system load, created by other applications. Negative effects such
as CPU migration during execution, and context switches are minimized. dTLB-load-
misses and dTLB-store-misses have been reduced by an average of 1.45% compared to
the initial values (compared with D*T configurations). Cache misses are virtually
unchanged throughout the test, which is apparently due to the test tasks
implementation specifics — the cyclic traversal algorithm for an array of several
megabytes in size with a step significantly larger than unity, which prevents loading this
array into the CPU cache. Four families of general-purpose operating systems and their
features have been analysed during the study. Analysis results allowed to prepare a
summary of the algorithms used for task scheduling and dispatching. The following
general principles have been identified: Utilization of pre-emptive multi-tasking with
CPU time slicing; Computing resources are provided depending on the execution history;
Separately scheduled classes of real-time tasks; Ability to assign tasks to individual
cores; Ability to bind interrupts to individual cores. This allowed deciding on the
approach used to solve the considered problem. A resource allocation method has been
chosen and implemented as software unit, based on mechanisms common to the
considered systems. The proposed application starts the computations in the
configuration corresponding to the system topology, sets the real-time scheduling policy
for threads, assigns them to the available cores, and independently schedules task
execution. The effectiveness of the developed software is confirmed by test runs and
measurement of such indicators as runtime, number of context switches and accesses to
external memory.

ACKNOWLEDGMENT

The article is published with the support of the scholarship from the President of
Russian Federation to young scientists and graduate students in 2018-2020 (SP-
68.2018.5).

REFERENCES

1. Baldwin, J.H. (2002). Locking in the Multithreaded FreeBSD Kernel. BSDCon, 27-35.

2. Barban, A.P., Ignatushenko, V.V., & Podshivalova, I.Yu. (2003). On the
effectiveness of dispatching methods for complex sets of tasks in heterogeneous
multiprocessor computing systems. Automation and Telemechanics, 10, 66-79.

P á g i n a | 13

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

3. Biktashev, R.A., & Vashkevich, N.P. (2017). Structural implementation and
modelling of scheduling/ dispatching algorithms in parallel computing systems based on
non-deterministic automata logic. New information technologies and systems: Collection
of scientific articles of the XIV International Scientific and Technical Conference
dedicated to the 70th anniversary of the Computer Engineering Department and the
30th anniversary of the Computer-aided Design Systems Department, 12-17.

4. Biktashev, R.A., Vashkevich, N.P., & Kiselev, S.V. (2016). Development of a process
scheduling tool for multiprocessor systems. Modern technologies in science and education
- STNO-2016: Proceedings of the international scientific-technical and scientific-
methodical conference: in 4 volumes. Ryazan State Radio Engineering University; Under
general editorship of O.V. Milovzorov, 304-308.

5. Bogatyrev, V.A., & Golubev, I.Yu. (2013). Optimal dispatching in distributed
computing systems with nodes grouped in clusters. Bulletin of computer and information
technologies, 8(110), 36-40.

6. Bovet, D., & Cesati, M. (2007). LINUX kernel, 3 ed. – BHV-Petersburg.

7. Chasovskikh, Ye.G. (2017). Dispatching criteria for heterogeneous distributed
computing systems. Intelligent Information Systems Proceedings of the All-Russian
Conference with International Participation, 97-99.

8. Chen, J.B., & Bershad, B.N. (1994). The impact of operating system structure on
memory system performance. ACM SIGOPS Operating Systems Review. – ACM, 27(5), 120-
133.

9. Chiussi, F.M., & Sivaraman, V. (2003). Guaranteeing data transfer delays in data
packet networks using earliest deadline first packet schedulers: USA patent 6532213.

10. Cohen, A., & Woodring, M. (1998). Win32 Multithreaded Programming. – Oreilly &
Associates Incorporated.

11. Demyanyuk, D.A., & Kogan, D.I. (2013). Issues of informational and algorithmic
support for uniprocessor task dispatching. Bulletin of Moscow State University of
Instrument Engineering and Computer Science. Series: Instrument engineering and
computer science, 44, 83-90.

12. Dokuchaev, A.N. (2012). On the evaluation of the effectiveness of dispatch
mechanisms of real-time multiprocessor systems, taking into account long-term locking
effects. Software Engineering, 9, P. 2-7.

13. Dokuchaev, A.N. (2012). Specific aspects of ultralight tasks dispatching in
multiprocessor real-time computing systems. Information Technologies, 2, 14-18.

14. Drepper, U., & Molnar, I. (2003). The native POSIX thread library for Linux. White
Paper, Red Hat Inc.

15. Egorov, V.Yu. (2011). Criteria for assessing task scheduling effectiveness for a
multiprocessor operating system. Software Engineering, 3, 29-33.

16. Filippenko, P.N., Shashelov, A.A., & Seitova, S.V. (2010). Creating systems for big
data computations: problems and trends. Proceedings of the Southern Federal University.
Technical sciences, 113, 12.

P á g i n a | 14

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

17. Gergel, V.P. (2010). High-performance computing for multiprocessor multicore
systems. Moscow: Moscow University Press, P. 534.

18. Khludova, M.V. (2010). Operating systems. Process scheduling and dispatching:
textbook. - St. Petersburg: Publishing House of the Polytechnic University, - 83 p.

19. Kurnosov, M.G., & Paznikov, A.A. (2012). Decentralized scheduling algorithms for
spatially distributed computing systems. Tomsk State University Bulletin. Management,
computer engineering and computer science, 1(18),133-142.

20. Lupin, S.A., Than Zo Woo, Zhuo Myu Htun. (2012). Using random search
algorithms to solve the dispatching problem in distributed service systems. News of
higher educational institutions. Electronics, 3(95), 40-46.

21. Martyshkin, A.I. (2013). Mathematical modelling of task managers for
multiprocessor computing systems on the basis of open-loop queueing networks:
Abstract of Ph.D. thesis in Engineering: 05.13.18. Penza State Technological University.
Penza, - 23 p.

22. Martyshkin, A.I. (2016). Mathematical Modelling of Tasks Managers with the
Strategy of Separation in Space with a Homogeneous and Heterogeneous Input Flow and
Finite Queue. ARPN Journal of Engineering and Applied Sciences, 11(19), 11325-11332.

23. Martyshkin, A.I., & Martens-Atyushev, D.S. (2019). Mathematical modelling and
evaluation of the characteristics of specialized reconfigurable systems based on a
common bus at the stage of synthesis of the system configuration. Journal of Advanced
Research in Dynamical and Control Systems, 11(8 Special Issue), 2852-2860.

24. Martyshkin, A.I., & Yasarevskaya, O.N. (2015). Mathematical modelling of Task
Managers for Multiprocessor systems on the basis of open-loop queuing networks. ARPN
Journal of Engineering and Applied Sciences, 10(16), 6744–6749.

25. Martyshkin, A.I., Pashchenko, D.V., & Trokoz, D.A. (2019). Queueing Theory to
Describe Adaptive Mathematical Models of Computational Systems with Resource
Virtualization and Model Verification by Similarly Configured Virtual Server. (2019).
Proceedings. International Russian Automation Conference, RusAutoCon 2019. no.
8867620.

26. McDougall, R., & Mauro, J. (2006). Solaris internals: Solaris 10 and OpenSolaris
kernel architecture. – Pearson Education.

27. McKusick, M. K., Bostic, K., Karels, M. J., & Quarterman, J. S. (1996). The design and
implementation of the 4.4 BSD operating system (Vol. 2). Reading, MA: Addison-Wesley.

28. Mikheev, M.Yu., Zhashkova, T.V., Meshcheryakova, E.N., Gudkov, K.V., & Grishko,
A.K. (2016). Imitation modelling for the subsystem of identification and structuring data of
signal sensors. Proceedings of 2016 IEEE East-West Design and Test Symposium, EWDTS
2016. 7807748.

29. Roganov, V.R., Roganova, E.V., Micheev, M.J., Zhashkova, T.V., Kuvshinova, O.A., &
Gushchin, S.M. (2018). Flight simulator information support. Defence S and T Technical
Bulletin, 11(1), 90-98.

30. Semenov, A.O. (2015). A stochastic approach to queue dispatching. Optoelectronic
devices and devices in pattern recognition, image and symbol information processing

P á g i n a | 15

Turismo: Estudos & Práticas (UERN), Mossoró/RN, Caderno Suplementar 05, 2020
http://natal.uern.br/periodicos/index.php/RTEP/index [ISSN 2316-1493]

systems: Proceedings of the XII International Scientific and Technical Conference, 331-
333.

31. Semenov, A.O. (2016). Cyclic queue dispatching algorithms modelling specifics and
their implementation in the Simulink system. New information technologies and systems:
Collection of scientific articles of the XIII International Scientific and Technical
Conference, 179-181.

32. Silberschatz, A. et al. (1998). Operating system concepts. – Reading: Addison-
Wesley, – V. 4.

33. Stallings, W. (2002). Operating Systems: Translated from English 4th ed. Moscow:
Publishing house "Williams". - 848 p.

34. Tanenbaum, A., & Bos, H. (2015). Modern operating systems. 4th ed. - St.
Petersburg: Peter, 1120 p.

35. Tanenbaum, A., & Woodhull, A. (2007). Operating systems: design and
implementation. 3rd ed. - St. Petersburg: Peter, - 704 p.

36. Unice, W.K. (2004). Deterministic preemption points in operating system execution:
USA patent 6802024.

37. Vashkevich, N.P., Biktashev, R.A., & Kiselev, S.V. (2014). Task scheduling
algorithm verification for a multiprocessor system using Stateflow tools. Challenging
issues of the humanities and natural sciences, 12-1, 42-46.

38. Voevodin, V. V., Voevodin, Vl. V. (2002). Parallel computing. St. Petersburg: BHV-
Petersburg, - 608 p.

39. Zhao, W., & Stankovic, J.A. (1989). Performance analysis of FCFS and improved
FCFS scheduling algorithms for dynamic real-time computer systems. Real Time Systems
Symposium, 1989. Proceedings. – IEEE, 156-165.

