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Abstract: This paper suggests a possible task manager implementation for general-
purpose operating systems. The aim of the study is to maximize processor utilization in 
exclusive mode for general-purpose operating systems. The subject research field of this 
study is relevant today in the light of global informatization and the urgent issue of 
improving computing performance. In order to achieve the objectives, set in this study, 
several particular problems have been solved, which include analysing various 
scheduling strategies for computational task execution, comparing specifics of various 
operating systems, choosing a system resource allocating method, developing a software 
for running calculations in priority mode, and minimizing scheduling and dispatching 
overheads. During the study, we have analysed four families of general-purpose 
operating systems and their features. A summary information on the utilized scheduling 
and dispatching algorithms has been prepared based on the analysis results, which 
allowed choosing the appropriate approach to solve the problem under consideration. A 
resource allocation method has been chosen and implemented as software unit, based 
on mechanisms common to the considered systems that developed software starts 
computations under a configuration corresponding to the system's topology, sets a real-
time scheduling policy for threads, assigns them to available computational cores, and 
independently dispatches task execution. The effectiveness of the developed software is 
confirmed by test runs and measurement of such indicators as runtime, number of 
context switches and accesses to external memory. The main results obtained can be 
applied when designing new and improving the existing general-purpose operating 
systems. 
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INTRODUCTION 
 

Conceptual provisions on the essence of audit the today's world sets high 
requirements to the computing performance. Task optimization with the execution time 
reduced from one minute to 59 seconds will most likely go unnoticed by a regular PC 
user. The situation is different when large amounts of data shall be processed (16). 
Reducing the execution time of a continuously repeated task from 60 to 59 seconds 
allows finishing the entire number of operations 1.67% faster or perform 1.67% more 
operations in the same time period. Thus, about six days of runtime per year can be 
gained. It is not always possible to optimize the computations, in particular (17). Task 
runtimes can be divided into several stages: including initialization, CPU wait, waiting 
for other resources, CPU execution, termination. Initialization includes creating the data 
structures required for the operating system's kernel, loading the application image into 
the main memory, opening the required files, allocating other resources, and initial CPU 
execution scheduling. Tasks waiting for CPU in a ready tasks queue is a standard 
procedure in multi-tasking systems with time-sharing. Typically, the CPU executes a 
priority task while the rest are waiting in a queue. The operating system's kernel uses 
dynamic priorities preventing any task to monopolize the CPU (34). Task execution by 
the CPU at some point in time means its code is executed at that moment by the CPU. If a 
certain event is necessary for the further execution of a task, the task is added to the 
queue and wait for this event. Such an event may be I/O being finished without CPU 
participation, system resource being freed (for example, a synchronization primitive), 
and etc. 

I/O waiting time depends on the load and bandwidth of the I/O subsystem. CPU 
execution time depends on the program code optimization. The queue waiting time for 
ready tasks depends on their number in the system, the required computing power, the 
ratio of priorities and configuration of OS scheduler and task manager. Initialization 
time almost completely depends on the operating system implementation specifics (34). 
When studying the subject research field, we analysed literature sources (5; 18; 11; 12; 
20) and (18; 11; 12; 20; 19; 12; 11; 2; 38) in order to find any poorly studied issues. 
Some important issues related to implementation of scheduling and dispatching 
subsystems of computer systems did not find the necessary coverage in published 
works, however, they are mentioned in the following sources (27; 37; 15; 28;) and  (31; 
4; 3; 7). This study discusses the problems associated with task execution scheduling 
and dispatching. The objective for this study is to maximize CPU resources utilization in 
exclusive mode for general-purpose operating systems. The subject research field 
considered in this study is relevant today due to global informatization and the urgent 
issue of improving computing performance. To achieve the objective defined above, the 
study solves the following particular problems: analyse various strategies for 
computational task execution scheduling; compare the specifics of various operating 
systems; choose a resource allocation method; develop a software for running 
calculations in priority mode to minimize scheduling and dispatching overheads; 
perform comparative performance measurements. 

General-purpose operating systems are used in personal computers and server 
systems, usually for data processing (computing, processing, storage). The main 
requirement to these systems is wide support for various software packages (34). Low 
cost of personal computers and a wide range of solved tasks contributed to their 
widespread use (35; 33), as well as induced rapid development of time-sharing 
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operating systems. Such systems are intended to solve the following problems: ensure 
full utilization of computer resources; ensure that each task is executed by the CPU; 
ensure each task receives the required amount of computing resources depending on 
their priority. Time-sharing systems use CPU time slicing for task execution. In the 
general case, the task is interrupted as a time slice expires, and the next task is selected 
for execution. Implementation details depend on the algorithm used for task scheduling. 

 

SCHEDULING ALGORITHMS 
 

In the context of this study, it makes sense to define scheduling algorithms that 
have an independent implementation or are a part of a more complex algorithm: First 
Come First Served (FCFS, FIFO) — execution in the order of arrival (39). The first ready 
task is executed by the CPU, each subsequent task enters the queue and waits for the 
completion of all tasks ahead of it. This ensures execution in case none of the tasks 
occupy the CPU forever. This algorithm is not related to time-sharing since tasks are 
executed sequentially without interrupting. Round Robin (RR) — tasks are performed 
cyclically in fixed time intervals (32). At the end of each interval, the task is added to the 
end of the queue. For each task, this process is repeated until it is completed. The cyclic 
nature of the algorithm ensure that each task takes 1/N of CPU time, where N is the total 
number of tasks. Shortest Job First — each time a task is selected for execution with the 
smallest execution time available in the queue (32). Though, for this algorithm to work, 
the time required to complete a certain task shall be known. Fixed Priority Pre-emptive 
— at any given time, the CPU executes the highest priority task (36). When a task with 
the highest priority appears, the task being executed is interrupted and is queued, 
freeing the resources for the priority one. Execution of low priority tasks is not 
guaranteed. Earliest Deadline First — each task is assigned a deadline, exceeding which 
makes further execution no longer required (9). 

Priority Queue — a queue with task processing order not depending on the time 
when tasks are added to the queue (32). Each time, a task with the highest priority is 
selected for execution from the entire queue. With this case, two implementations are 
possible: a pre-emptive algorithm, when a task in the queue with a priority higher than 
the one being processed, pre-empts the latter, and a non-pre-emptive algorithm, when a 
new task with the highest priority waits for the task already executed by the CPU to be 
completed. Multilevel queue — tasks are added to one of the queues that differ in 
priorities and assigned to it until completion (32). A task is selected for execution from 
the priority queue. Queues can implement various scheduling algorithms. For example, 
two queues can be used for different classes of tasks, a FCFS queue with a higher 
priority, and a lower priority queue with a priority-based internal implementation. 
Tasks from the first queue can pre-empt tasks of the second queue from the CPU. Thus, 
two classes of tasks can be simultaneously processed — tasks of ordinary and higher 
priority, which is pre-emptive. Multilevel feedback queue — unlike a multilevel queue, 
tasks can switch from one queue to another, usually after exhausting their CPU quota 
(32). 

 

OVERHEADS AND THEIR IMPACT 
 

Overheads consist of the time required for scheduling/dispatching tasks and 
related processes. The scheduler’s runtime depends on the computational complexity of 
its implementation and, generally, the number of tasks in the system. Typically, 
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dispatching is well optimized and takes very little CPU time, however, the related 
context switching process entails cache cooling, TLB invalidation and, in the worst case, 
page swapping. Cache cooling means losing cache entries and frequent cache misses 
before the cache warms up. A cache miss is followed by an access to a lower, slower 
memory level. TLB contains addresses of virtual pages of the process. TLB invalidation 
results in double number of accesses to RAM (8). Process page swapping to disk is a way 
to deal with low memory. Process pages not currently required are saved to disk, and 
the necessary pages are loaded into RAM. This leads to an active exchange with the 
slowest memory in a PC. Computing performance massively decreases in the case of 
active swapping (34). 

The following operating systems have been selected to study the functionality 
and utilized scheduling/dispatching algorithms: FreeBSD 10; GNU\Linux 4; Oracle 
Solaris 11; Microsoft Windows 7. The choice of operating systems for analysis is dictated 
by their prevalence in computing applications, as well as by an intention to cover 
various operating system families to identify the most suitable implementations of the 
required functionality. This study uses the concept of a "task" to denote an independent 
dispatch unit. Using the terminology of Windows, Solaris, and FreeBSD operating 
systems, a "process" is a system entity containing the environment necessary for 
application execution, including program code. A "thread" is an entity that stores the 
execution state of a sequence of instructions related to a process. One process can have 
one or several threads (26; 1; 10). All Linux threads are actually processing that share 
common system resources (14). As these resources are already allocated, thread 
creation overheads are reduced. The result is an entity, which is dispatched as threads in 
other operating systems. Thus, all considered operating systems use threads as a 
minimum dispatch unit. 
 

TASK SCHEDULERS 
 

The FreeBSD kernel scheduler uses several priority executions queues (run 
queues, Figure 1a): itqueues, rtqueues, queues, idqueues — in decreasing order by 
priority (26).  
 

 
 

Figure 1. Schedulers of various operating systems 
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A priority task is selected from the non-empty higher priority queue. Task 
execution is forcibly interrupted after the time slice allocated to it is elapsed, and its 
dynamic priority is recounted. The task is added to the end of a queue containing tasks 
of equal priority. A task that locked a shared resource receives the priority of a task 
waiting for this resource, if it is higher. The Solaris OS scheduler uses multiple queues as 
per the number of priorities, as well as a priority conversion table (Figure 1b). When the 
time slice allocated for a task expires, the priority of this task is decreased, however, at 
the same time, its next time slice is increased. On the contrary, the task, which frees the 
CPU before the time slice expires, gets a higher priority and a smaller time slice. As a 
result, the waiting time of small frequent tasks is reduced, they get executed faster, while 
large computational tasks are executed more efficiently because their execution is 
interrupted less often. Tasks that lock system resources receive a higher priority, which 
reduces the execution time of such tasks, reduces the time till resource release, and 
reduces waiting time of tasks waiting for this resource. 

CFS scheduler, included in the main branch of Linux kernel development, uses 
several different data structures (Figure 1c) (6). Deadline class tasks have a clearly 
defined execution time and deadline. They are scheduled for execution by the Earliest 
Deadline First algorithm. Real-time tasks have static priorities and are scheduled 
according to one of the following algorithms: First Come First Served or Round Robin. 
Fixed time slices are used for the latter case, after which the tasks are added to the end 
of the queue according to its priority. In the first case, the higher priority task is 
executed completely, without interrupting. For standard priority tasks, CFS implements 
a weighted fair queue algorithm. Being assigned to the CPU, the task receives execution 
time proportional to the queue waiting time and inversely proportional to the number of 
tasks ready for execution.  

Windows OS family task scheduler uses several classes and priority levels: low, 
medium, high, and two intermediate levels (Figure 1d). Each task is assigned a base 
priority by the scheduler. A task with the highest priority is always selected for 
execution. The kernel scheduler can increase its priority in one of the following four 
cases: 1. an event occurs, for example, user input waiting to be handled by a task; 2. the 
task is performed interactively in the foreground; 3. the task is unlocked; 4. tasks ready 
for execution are randomly and periodically assigned a higher priority. As a CPU time 
slice expires, the dynamic priority of a task decreases by one, down to lower limit. Thus, 
the scheduler fights the "starvation" effect by increasing the priorities of waiting tasks 
and bringing them back to normal as this effect decreases. Interactive processes are also 
assigned higher priorities. 

 

PRIORITY SCHEDULING STRATEGIES 
 

FreeBSD, Linux, and Solaris operating systems support Pthreads, a POSIX-
compatible library that provides a single interface for multi-threaded applications. 
Solaris also provides its own Solaris Threads interface, introduced before Pthreads. 
Solaris Threads provides such features as parallelism management, thread 
sleep/wakeup, read/write locks mechanism, and daemon thread creation. In contrast, it 
does not support thread cancellation and POSIX scheduling strategies. Windows has its 
own threads implementation — Windows Threads. This interface has many features 
that are not supported in POSIX, such as: per user scheduling, fibers manually managed 
in the scope of a stream, critical sections as a synchronization primitive. Table 1 contains 
a summary on the interfaces for interaction with threads, schedulers, and their 
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configurations. 

Table 1. Interfaces of operating systems 

OS family FreeBSD GNU/Linux Solaris Windows 

Thread management POSIX.1 Pthreads Windows Threads 

Scheduler  
interface 

sched_setscheduler 
(SCHED_FIFO) 

SetPriorityClass 
(REAL TIME_PRIORITY_ CLASS) 

CPU affinity pthread_  
setaffinity_ np 

sched_ setaffinity processor_ bind SetThreadAffinityMask 

 

As can be seen from the table, FreeBSD, Linux, Solaris OSs support POSIX 
standardized interfaces (29), and therefore the code that implements interactions via 
these interfaces will be easily portable between systems. The POSIX standard does not 
include the CPU affinity functionality for threads, however, all the considered operating 
systems have similar capabilities, although without a cross-compatibility. 
 

SOFTWARE IMPLEMENTATION 
Computing process scheme 

 

The computing process is based on scheme that uses the general principles 
implemented in the operating systems considered above. To maximize CPU utilization 
by computational tasks and minimize the number of context switches, SCHED_FIFO 
scheduling strategy has been selected. This allows to bind the required number of 
threads to the CPU, which are not pre-empted after time slices expire. Tasks are 
implemented as functions contained in a queue being part of the application. Task 
managing includes saving the result returned by the function, reading and moving the 
pointer, and calling a new function. To exclude possible thread migrations between 
processors, an explicit processor binding is used. Software interrupts are also 
prohibited. 
 

Definition of system topology 
 

System topology, the number of processors, physical and logical cores are 
determined at application start. On Linux, this information is extracted from sysfs 
unified virtual file system, which serves as an interface for kernel structures. 
/sys/devices/system/cpu/ virtual folder contains cpuN sub-folders with files describing 
the topology and state of the corresponding logical kernel number N: 

int topology (int ** cpus) 
{ 
struct dirent ** cpusdir; int c, count; 
count = scandir (SYSFS_CPU, &cpusdir, cpu_dir_filter, alphasort); 
if ((*cpus = malloc (sizeof(int) * count)) == NULL) 
{ 
err (EXIT_FAILURE, "can't allocate memory for " \ "cpus array"); 
} 
for (c=0; c < count; ++c) 
{ 
assert (1 == sscanf (cpusdir[c]->d_name, "cpu%d", &(*cpus)[c])); 
} 
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return count; 
} 
 

After the topology is determined, a decision is on the CPU affinity of the 
computing threads: 

cpu_set_t set; 
/* ... */ 
if (tharg -> cpu >= 0) /* if < 0, do not bind */ 
{ 
CPU_SET (tharg -> cpu, &set); 
if ( -1 == sched_setaffinity ( 0, sizeof(set), &set ) ) 
{ 
err (EXIT_FAILURE, "Can't set affinity mask"); 
} 
} 

 

Assigning real-time priority  
 

In order to arrange the computational process, we decided to create a dedicated 
software that prepares threads for computation and initiates tasks. Each thread runs on 
a dedicated core/processor, and the number of threads is equal to the number of cores 
minus one. One core is allocated to the needs of various system and user tasks. This 
allows to achieve the maximum degree of parallelism, while maintaining system 
responsiveness. Since CPU time-sharing strategy does not allow monopolizing the cores 
for practical computations, we decided to assign the computational tasks to the real-
time class, having the highest priority in the system. Real-time tasks have the highest 
priority, which does not change depending on the execution time, and are never pre-
empted by low-priority tasks. Computational tasks get maximum CPU time. 

FCFS task scheduling algorithm has been selected since this algorithm results in 
minimal overheads and is easy to implement. Time slicing is not used, and the task is not 
forcibly interrupted until its execution is finished. No unnecessary context switches are 
used, the caches are warm most of the time and work efficiently. 

SCHED_FIFO scheduling strategy is set usingsched_setscheduler system output, 
implementation of the call in the source code is shown below. 

if (-1 == sched_setscheduler (0 /* self */, SCHED_FIFO, 
&((struct sched_param) { .sched_priority = 99 })) ) 
{ 
warn ("Can't set SCHED_FIFO policy"); 
} 
 

Interrupt binding 
 

Interrupt handling can be assigned to a specific core. A proc virtual file system 
interface is used for this purpose. /proc/irq/M/smp_affinity file (where M is the 
interrupt number) contains a mask, high bits of which define permissions for being 
handled by the core with the corresponding number. At start-up, the developed software 
records the mask and the corresponding free core. For example, mask 8 corresponds to 
core 3. 
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Application task queue arrangement 
 

The application queue contains pointers to functions and arguments passed to 
them. Computational threads independently select tasks by copying pointers to a 
function and an argument into their local context and moving the current queue 
element's pointer. Mutex synchronization primitive is used for sharing. The block 
diagram of the task selection algorithm is shown in Figure 2. 

 

 
Figure 2. Queued task selection algorithm 

 
THE RESULTS OF THE CONCLUDED RESEARCH 
Measurements of the software performance indicators 

 

The measurements of counters built into the CPU and Linux operating system 
kernel (starting from version 2.6.31) have been made using the perf utility (Mikheev et 
al., 2016; Martyshkin et al., 2019; Martyshkin & Martens-Atyushev, 2019). The number 
of context switches, TLB misses, cache misses of the first and last level, the number of 
thread migrations from processor to processor, and the total execution time have been 
measured. Test run and measurements have been carried out on a PC with an 
Intel®Core™ i5 6200U processor, running GNU/Linux OS (x64, kernel version 4.4.0-79-
generic). CPU specifications: 

• Number of physical cores: 2. 

• Number of logical cores: 2. 

• Operating frequency: 2.30 GHz. 

• L1 instruction cache: 32 KB per core. 

• L1 data cache: 32 KB per core. 

• L2 cache: 256 KB per core. 

• L3 cache: 3 MB per processor. 

The operating system's kernel has been allocated 2 GB of RAM. As a useful load, a 
task has been chosen that implements a cyclic array traversal with a varying step and 
increasing element values. The array size was 5 MB. The external load has been 
modelled by four processes actively performing operations with memory (allocated a 
total of 1.5 GB of RAM). The measurement results are summarized in Table 2 as the 
average values of collections with confidence intervals for each of 100 independent 
measurements. The values of all indicators are expressed in the number of events, 
except for time, which is expressed in seconds. The first column of the table contains a 
list of measured indicators (branches, cache-misses, etc.) and explanations regarding the 
test environment: 
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• No load — no CPU consuming tasks have been running on the machine in 
addition to the test task. CPU load before the test launch remained at 3-5%, which 
indicated idle state of the CPU. 

• Load 1 — CPU load simulating application has been also running on each core of 
the machine in addition to the test task. This application worked with a small amount of 
RAM (0.1% of the total amount of RAM), constantly performing arithmetic operations. 

• Load 2 — CPU load simulating application has been also running on each core of 
the machine in addition to the test task. Each instance of this application worked with a 
large amount of RAM (about 19% of the total amount), constantly performing arithmetic 
operations. 

The remaining column headers contain three-character codes. The first letter 
denotes the application configuration (D is the default configuration by OS, C is the 
configuration prepared by the developed application). The number corresponds to the 
number of threads (T) started by the application. 
 

Table 2. Measurement results 
 

No load D1T C1T 
branches 1.436e+10 ± 4.664e+06 1.435e+10 ± 1.030e+07 
cache-misses 1.495e+09 ± 2.677e+06 1.502e+09 ± 8.676e+05 
cache-references 2.697e+09 ± 2.879e+06 2.705e+09 ± 1.098e+06 
dTLB-load-misses 478 ± 55 104 ± 24 
dTLB-loads 6.458e+10 ± 1.078e+07 6.459e+10 ± 2.472e+07 
dTLB-store-misses 797 ± 210 12.4 ± 2.1 
dTLB-stores 2.157e+10 ± 3.665e+06 2.159e+10 ± 7.813e+06 
page-faults 1.087e+03 ± 1.074e-01 1.088e+03 ± 1.640e-01 
context-switches 48.6 ± 2.9 1.20 ± 0.09 
cpu-migrations 0.80 ± 0.09 1.00 ± 0.00 
time 22.1 ± 0.1 21.4 ± 0.0 
No load D2T C2T 
branches 1.435e+10 ± 5.726e+06 1.431e+10 ± 1.864e+06 
cache-misses 1.700e+09 ± 2.195e+06 1.663e+09 ± 8.744e+05 
cache-references 2.717e+09 ± 2.457e+06 2.693e+09 ± 1.334e+06 
dTLB-load-misses 2.276e+04 ± 2.956e+03 503 ± 41 
dTLB-loads 6.448e+10 ± 1.706e+07 6.459e+10 ± 9.164e+06 
dTLB-store-misses 2.297e+05 ± 4.241e+04 44.8 ± 5.5 
dTLB-stores 2.155e+10 ± 2.234e+06 2.157e+10 ± 4.342e+06 
page-faults 1.098e+03 ± 1.640e-01 1.099e+03 ± 1.074e-01 
context-switches 2.191e+03 ± 1.429e+01 3.20 ± 0.21 
cpu-migrations 1.00 ± 0.00 3.40 ± 0.18 
time 11.8 ± 0.0 11.7 ± 0.0 
No load D3T C3T 
branches 1.434e+10 ± 5.941e+06 1.429e+10 ± 2.760e+06 
cache-misses 1.759e+09 ± 2.635e+06 1.769e+09 ± 2.020e+06 
cache-references 2.726e+09 ± 7.285e+05 2.721e+09 ± 2.193e+06 
dTLB-load-misses 4.783e+03 ± 1.447e+02 2.780e+03 ± 1.627e+02 
dTLB-loads 6.459e+10 ± 5.919e+06 6.458e+10 ± 1.162e+07 
dTLB-store-misses 1.110e+03 ± 7.133e+01 226 ± 18 
dTLB-stores 2.158e+10 ± 6.639e+06 2.153e+10 ± 3.971e+06 
page-faults 1.107e+03 ± 8.765e-02 1.108e+03 ± 1.640e-01 
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context-switches 675 ± 68 7.80 ± 0.56 
cpu-migrations 13.0 ± 1.7 6.80 ± 0.21 
time 10.6 ± 0.0 10.8 ± 0.0 
No load D4T C4T 
branches 1.435e+10 ± 2.488e+06 1.432e+10 ± 3.669e+06 
cache-misses 1.845e+09 ± 1.930e+06 1.799e+09 ± 2.599e+06 
cache-references 2.747e+09 ± 1.440e+06 2.741e+09 ± 2.915e+06 
dTLB-load-misses 2.086e+04 ± 1.252e+03 1.621e+03 ± 1.599e+02 
dTLB-loads 6.453e+10 ± 1.124e+07 6.454e+10 ± 1.465e+07 
dTLB-store-misses 5.382e+03 ± 2.319e+02 82.8 ± 8.2 
dTLB-stores 2.158e+10 ± 6.639e+06 2.154e+10 ± 3.601e+06 
page-faults 1.117e+03 ± 8.765e-02 1.118e+03 ± 2.235e-01 
context-switches 6.570e+03 ± 9.412e+01 12.2 ± 0.7 
cpu-migrations 10.2 ± 1.1 8.00 ± 0.31 
time 10.0 ± 0.0 11.2 ± 0.1 

 

Table 2. continued. 
 

Load 1 D1T C1T 
branches 1.435e+10 ± 7.193e+06 1.436e+10 ± 1.761e+06 
cache-misses 1.513e+09 ± 8.936e+05 1.484e+09 ± 1.705e+06 
cache-references 2.733e+09 ± 3.375e+06 2.737e+09 ± 5.586e+05 
dTLB-load-misses 8.761e+04 ± 1.947e+03 66.0 ± 9.9 
dTLB-loads 6.457e+10 ± 2.873e+07 6.444e+10 ± 5.903e+06 
dTLB-store-misses 1.030e+06 ± 2.830e+04 3.50 ± 1.16 
dTLB-stores 2.157e+10 ± 8.985e+06 2.154e+10 ± 3.123e+06 
page-faults 1.088e+03 ± 8.765e-02 1.088e+03 ± 1.323e-01 
context-switches 2.988e+03 ± 7.981e+01 2.40 ± 0.10 
cpu-migrations 27.0 ± 1.3 1.00 ± 0.00 
time 34.0 ± 0.2 23.1 ± 0.0 
Load 1 D2T C2T 
branches 1.435e+10 ± 6.432e+06 1.430e+10 ± 1.702e+06 
cache-misses 1.702e+09 ± 2.208e+06 1.663e+09 ± 3.761e+05 
cache-references 2.717e+09 ± 1.496e+06 2.696e+09 ± 6.666e+05 
dTLB-load-misses 7.739e+04 ± 1.574e+03 469 ± 27 
dTLB-loads 6.448e+10 ± 2.065e+07 6.455e+10 ± 2.640e+06 
dTLB-store-misses 8.214e+05 ± 2.236e+04 82.6 ± 22.5 
dTLB-stores 2.155e+10 ± 6.607e+06 2.155e+10 ± 7.560e+05 
page-faults 1.097e+03 ± 8.765e-02 1.099e+03 ± 2.556e-01 
context-switches 4.220e+03 ± 5.518e+00 3.20 ± 0.09 
cpu-migrations 1.40 ± 0.11 1.00 ± 0.00 
time 23.7 ± 0.0 11.5 ± 0.0 
Load 1 D3T C3T 
branches 1.434e+10 ± 6.226e+06 1.431e+10 ± 3.532e+06 
cache-misses 1.782e+09 ± 2.505e+06 1.771e+09 ± 8.000e+05 
cache-references 2.757e+09 ± 4.269e+06 2.742e+09 ± 1.417e+06 
dTLB-load-misses 1.282e+04 ± 5.318e+02 4.382e+03 ± 2.493e+02 
dTLB-loads 6.449e+10 ± 1.561e+07 6.456e+10 ± 1.069e+07 
dTLB-store-misses 4.292e+03 ± 2.184e+02 398 ± 14 
dTLB-stores 2.155e+10 ± 9.231e+06 2.154e+10 ± 4.791e+06 
page-faults 1.108e+03 ± 8.765e-02 1.109e+03 ± 1.074e-01 
context-switches 3.133e+03 ± 3.443e+01 3.80 ± 0.16 
cpu-migrations 108 ± 2 2.80 ± 0.16 
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time 21.1 ± 0.1 12.6 ± 0.0 
Load 1 D4T C4T 
branches 1.433e+10 ± 7.305e+06 1.433e+10 ± 3.099e+06 
cache-misses 1.814e+09 ± 1.722e+06 1.797e+09 ± 2.400e+06 
cache-references 2.753e+09 ± 4.099e+06 2.748e+09 ± 6.591e+05 
dTLB-load-misses 1.247e+04 ± 3.250e+02 2.194e+03 ± 2.202e+02 
dTLB-loads 6.455e+10 ± 1.287e+07 6.449e+10 ± 7.020e+06 
dTLB-store-misses 4.281e+03 ± 1.577e+02 174 ± 13 
dTLB-stores 2.154e+10 ± 6.842e+06 2.155e+10 ± 4.983e+06 
page-faults 1.118e+03 ± 1.640e-01 1.118e+03 ± 1.074e-01 
context-switches 3.684e+03 ± 3.068e+01 4.60 ± 0.53 
cpu-migrations 60.6 ± 3.8 4.20 ± 0.35 
time 18.9 ± 0.0 11.3 ± 0.1 

 

Table 2. continued. 
 

Load 2 D1T C1T 
branches 1.435e+10 ± 5.606e+06 1.436e+10 ± 2.663e+06 
cache-misses 1.606e+09 ± 1.047e+06 1.579e+09 ± 8.044e+05 
cache-references 2.719e+09 ± 2.412e+06 2.739e+09 ± 1.995e+06 
dTLB-load-misses 3.959e+05 ± 1.314e+05 1.530e+06 ± 2.442e+03 
dTLB-loads 6.465e+10 ± 1.587e+07 6.459e+10 ± 1.663e+07 
dTLB-store-misses 4.462e+06 ± 1.462e+06 1.839e+07 ± 2.129e+04 
dTLB-stores 2.158e+10 ± 4.435e+06 2.157e+10 ± 3.151e+06 
page-faults 1.396e+03 ± 1.344e+02 2.624e+03 ± 8.765e-02 
context-switches 3.245e+03 ± 5.795e+01 2.20 ± 0.09 
cpu-migrations 32.8 ± 1.1 1.00 ± 0.00 
time 35.1 ± 0.2 23.4 ± 0.0 
Load 2 D2T C2T 
branches 1.431e+10 ± 6.404e+06 1.434e+10 ± 3.165e+06 
cache-misses 1.749e+09 ± 2.172e+06 1.693e+09 ± 1.645e+06 
cache-references 2.712e+09 ± 3.882e+06 2.710e+09 ± 2.503e+06 
dTLB-load-misses 1.233e+06 ± 3.981e+04 1.162e+06 ± 8.296e+04 
dTLB-loads 6.453e+10 ± 3.515e+07 6.466e+10 ± 9.244e+06 
dTLB-store-misses 1.346e+07 ± 4.751e+05 1.310e+07 ± 1.051e+06 
dTLB-stores 2.156e+10 ± 6.402e+06 2.160e+10 ± 2.077e+06 
page-faults 4.166e+03 ± 1.753e-01 4.371e+03 ± 5.479e+01 
context-switches 4.207e+03 ± 7.115e+00 3.20 ± 0.16 
cpu-migrations 2.60 ± 0.41 1.40 ± 0.11 
time 24.0 ± 0.0 11.9 ± 0.0 
Load 2 D3T C3T 
branches 1.435e+10 ± 2.764e+06 1.433e+10 ± 4.876e+06 
cache-misses 1.823e+09 ± 3.568e+06 1.797e+09 ± 2.812e+06 
cache-references 2.766e+09 ± 4.407e+06 2.738e+09 ± 1.993e+06 
dTLB-load-misses 9.419e+04 ± 2.005e+04 7.027e+04 ± 1.814e+04 
dTLB-loads 6.456e+10 ± 2.016e+07 6.457e+10 ± 1.806e+07 
dTLB-store-misses 2.084e+04 ± 5.140e+03 1.922e+03 ± 5.547e+02 
dTLB-stores 2.155e+10 ± 4.381e+06 2.156e+10 ± 6.855e+06 
page-faults 2.233e+03 ± 3.841e+02 2.949e+03 ± 5.516e+02 
context-switches 2.981e+03 ± 6.360e+01 5.20 ± 0.32 
cpu-migrations 119 ± 2 3.20 ± 0.35 
time 21.1 ± 0.1 12.6 ± 0.0 
Load 2 D4T C4T 
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branches 1.434e+10 ± 2.563e+06 1.432e+10 ± 2.607e+06 
cache-misses 1.869e+09 ± 5.291e+06 1.810e+09 ± 1.661e+06 
cache-references 2.761e+09 ± 2.695e+06 2.748e+09 ± 1.722e+06 
dTLB-load-misses 7.792e+04 ± 4.837e+03 6.143e+03 ± 1.514e+03 
dTLB-loads 6.454e+10 ± 1.784e+07 6.445e+10 ± 9.041e+06 
dTLB-store-misses 1.428e+04 ± 4.364e+02 844 ± 233 
dTLB-stores 2.151e+10 ± 8.464e+06 2.153e+10 ± 4.089e+06 
page-faults 2.448e+03 ± 5.472e+01 1.326e+03 ± 9.031e+01 
context-switches 3.707e+03 ± 3.763e+01 7.60 ± 0.41 
cpu-migrations 75.0 ± 4.5 5.40 ± 0.26 
time 19.6 ± 0.1 11.7 ± 0.1 

 

Table 2 shows that computation time with the developed application is virtually 
not dependent on the system load, created by other applications. Negative effects such 
as CPU migration during execution, and context switches are minimized. dTLB-load-
misses and dTLB-store-misses have been reduced by an average of 1.45% compared to 
the initial values (compared with D*T configurations). Cache misses are virtually 
unchanged throughout the test, which is apparently due to the test tasks 
implementation specifics — the cyclic traversal algorithm for an array of several 
megabytes in size with a step significantly larger than unity, which prevents loading this 
array into the CPU cache. Four families of general-purpose operating systems and their 
features have been analysed during the study. Analysis results allowed to prepare a 
summary of the algorithms used for task scheduling and dispatching. The following 
general principles have been identified: Utilization of pre-emptive multi-tasking with 
CPU time slicing; Computing resources are provided depending on the execution history; 
Separately scheduled classes of real-time tasks; Ability to assign tasks to individual 
cores; Ability to bind interrupts to individual cores. This allowed deciding on the 
approach used to solve the considered problem. A resource allocation method has been 
chosen and implemented as software unit, based on mechanisms common to the 
considered systems. The proposed application starts the computations in the 
configuration corresponding to the system topology, sets the real-time scheduling policy 
for threads, assigns them to the available cores, and independently schedules task 
execution. The effectiveness of the developed software is confirmed by test runs and 
measurement of such indicators as runtime, number of context switches and accesses to 
external memory. 
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